• 0 Posts
  • 11 Comments
Joined 1 year ago
cake
Cake day: June 11th, 2023

help-circle

  • I suppose it depends on the language? For the most part I think you’re right. Exceptions are only used (if at all) in situations where a program diverges unexpectedly from its normal flow. But take a language like Python. They’re just everywhere. Even your plain old for loop ends on an exception, and that’s just business as usual.



  • There were breaking changes between C and C++ (and some divergent evolution since the initial split) as well as breaking changes between different releases of C++ itself. I am not saying these never happened, but the powers that be controlling the standard have worked hard to minimize these for better or worse.

    If I took one of my earliest ANSI C programs from the 80s and ran it through a C++23 compiler, I would probably need to remove a bunch of register statements and maybe check if an assumption of 16-bit int is going to land me in some trouble, but otherwise, I think it would build as long as it’s not linking in any 3rd party libraries.


  • I think the thing with C++ is they have tried to maintain backward compatibility from Day 1. You can take a C++ program from the 80s (or heck, even a straight up C program), and there’s a good chance it will compile as-is, which is rather astonishing considering modern C++ feels like a different language.

    But I think this is what leads to a lot of the complexity as it stands? By contrast, I started Python in the Python 2 era, and when they switched to 3, I was like “Wow, did they just break hello world?” It’s a different philosophy and has its trade-offs. By reinventing itself, it can get rid of the legacy cruft that never worked well or required hacky workarounds, but old code will not simply run under the new interpreter. You have to hope your migration tools are up to the task.


  • I started in C and switch to C++. It’s easy to think that the latter sort of picked up where the former left off, and that since the advent of C++11, it’s unfathomably further ahead. But C continues to develop and occasionally gets some new feature of its own. One example I can think of is the restrict key word that allows for certain optimizations. Afaik it’s not included in the C++ standard to date, though most compilers support it some non-standard way because of its usefulness. (With Rust, the language design itself obviates the need for such a key word, which is pretty cool.)

    Another feature added to C was the ability to initialize a struct with something like FooBar fb = {.foo=1, .bar=2};. I’ve seen modern C code that gives you something close to key word args like in Python using structs. As of C++20, they sort of added this but with the restriction that the named fields have to come in the same order as they were originally defined in the struct, which is a bit annoying.

    Over all though, C++ is way ahead of C in almost every respect.

    If you want to see something really trippy, though, have a look at all the crazy stuff that’s happened to FORTRAN. Yes, it’s still around and had a major revision in 2018.




  • tunetardis@lemmy.catoProgrammer Humor@lemmy.mlTrue Story
    link
    fedilink
    arrow-up
    12
    ·
    edit-2
    8 months ago

    There is an issue with templated code where the implementation does have to be in the header as well, though that is not the case here. C++20 introduced modules which I guess were meant to sort out this mess, but it has been a rocky road getting them to be supported by compilers.