Its cross-platform support (not just for using but also for building it) is not there yet, and it is quite huge and unstandardized with only one full implementation. I’d agree the last part will change with age, but given the frequent large changes and feature additions I am afraid it will be harder and harder and it is simply too complex and fast-moving for many low-level applications. It is closer to C++ than C in my eyes. I’d be happy seeing it replace C++ though for its memory safety benefits!
I’m not too familiar with C, but I was under the impression that C++ was deceloped as a superset to C, and was capable of everything C could do. Is that not the case?
Every programming language is an abstraction layer between the programmer and the machine that will run the code. But abstraction isn’t free. Generally speaking, the higher the abstraction, the less efficient the program.
C++ optionally provides a much higher level of abstraction than pure C, which makes C++ much nicer to work with. But the trade off is that the program will struggle to run in resource constrained environments, where a program written in C would run just fine.
And to be clear, when I say “low-end hardware”, I’m not talking about the atom-based netbook from 2008 you picked up for $15 at a yard sale. It will run C++ based programs just fine. I’m talking about 8- or 16-bit microcontrollers running at <100 MHz with a couple of hundred kB of RAM. Such machines are still common in many embedded applications, and they do not handle C++ applications gracefully.
C is the sniper you don’t see
And just like in Metal Gear, he dies of old age if you wait a bit.
C is old, ubiquitous and still does not have a good replacement for its low-level cross-platform usecases, so I’ll believe it when I see it 😄
Rust is doing a very decent job of low-level cross platform. C just has a very long history.
Its cross-platform support (not just for using but also for building it) is not there yet, and it is quite huge and unstandardized with only one full implementation. I’d agree the last part will change with age, but given the frequent large changes and feature additions I am afraid it will be harder and harder and it is simply too complex and fast-moving for many low-level applications. It is closer to C++ than C in my eyes. I’d be happy seeing it replace C++ though for its memory safety benefits!
Rust won’t replace c.
The programs are too bloated for many embedded systems where every byte counts because it’s in ROM or loaded jnto IRAM
All that memory safety and garbage collection, for example, comes at a big cost
I don’t think Rust has a garbage collector.
I’m not too familiar with C, but I was under the impression that C++ was deceloped as a superset to C, and was capable of everything C could do. Is that not the case?
I mean yeah, if you restrict yourself to the C part of C++ it can do everything C can. But then you’re not getting any of the advantages of C++.
Once you start using things like classes and templates heavily, your program will quickly outgrow low-end hardware.
“Outgrow low-end hardware”?
What does a programming language have to do with this?
Everything.
Every programming language is an abstraction layer between the programmer and the machine that will run the code. But abstraction isn’t free. Generally speaking, the higher the abstraction, the less efficient the program.
C++ optionally provides a much higher level of abstraction than pure C, which makes C++ much nicer to work with. But the trade off is that the program will struggle to run in resource constrained environments, where a program written in C would run just fine.
And to be clear, when I say “low-end hardware”, I’m not talking about the atom-based netbook from 2008 you picked up for $15 at a yard sale. It will run C++ based programs just fine. I’m talking about 8- or 16-bit microcontrollers running at <100 MHz with a couple of hundred kB of RAM. Such machines are still common in many embedded applications, and they do not handle C++ applications gracefully.